
UNIVERSITY OF TÜBINGEN

WILHELM-SCHICKARD-INSTITUTE
FOR COMPUTER SCIENCE

Department of Computer Architecture

JavaNNS

Java Neural Network Simulator

User Manual, Version 1.1

Igor Fischer, Fabian Hennecke, Christian Bannes, Andreas Zell

Contents
1. Introduction .. 4

1.1. How to read this manual... 4
2. Licensing and Acknowledgements .. 5

2.1. License Agreement ... 5
2.2. Acknowledgments .. 6

3. Installation.. 8
3.1. Running JavaNNS .. 8

4. A Quick Tour of JavaNNS... 9
4.1. Starting JavaNNS ... 9
4.2. Loading Files .. 9
4.3. View Network... 9
4.4. Training Network ... 9
4.5. Analyzing Network... 10
4.6. Creating a Network... 10
4.7. Graphical Network Display .. 10
4.8. Training and Validation Pattern Sets.. 11

5. Network Creation and Editing ... 12
5.1. Network View and Display Settings .. 12
5.2. Tools for Creating Networks .. 13
5.3. Editing Units... 14

6. Pattern Management... 15
7. Training and Pruning Networks ... 16
8. Analyzing Networks... 18

8.1. Projection Panel.. 18
8.2. Weights Panel ... 18
8.3. Analyzer.. 19

9. Loading, Saving and Printing... 20
Appendix A: Kernel File Interface ... 21

A.1. The ASCII Network File Format.. 21
A.2. Form of the Network File Eries.. 21
A.3. Grammar of the Network Files... 22
A.4. Grammar of the Pattern Files.. 27

Appendix B: Example Network File .. 30
B.1. Example 1: .. 30
B.2. Example 2: .. 32

4

1. Introduction
Java Neural Network Simulator (JavaNNS) is a simulator for neural networks developed at the
Wilhelm-Schickard-Institute for Computer Science (WSI) in Tübingen, Germany. It is based
on the Stuttgart Neural Network Simulator (SNNS) 4.2 kernel, with a new graphical user
interface written in Java set on top of it. As a consequence, the capabilities of JavaNNS are
mostly equal to the capabilities of the SNNS, whereas the user interface has been newly
designed and -- so we hope -- become easier and more intuitive to use. Some complex, but not
very often used features of the SNNS (e.g. three-dimensional display of neural networks) have
been left out or postponed for a later version, whereas some new, like the log panel, have been
introduced.

Besides the new user interface, a big advantage of JavaNNS is its increased platform indepen-
dence. Whereas SNNS was developed with primarily Unix workstations in mind, JavaNNS
also runs on PCs, provided that the Java Runtime Environment is installed. As of writing of
this manual JavaNNS has been tested on:

• Windows NT
• Windows 2000
• RedHat Linux 6.1
• Solaris 7
• Mac OS X
with more to follow soon.

1.1. How to read this manual
Because of large similarities between SNNS and JavaNNS, this manual covers only the differ-
ences between the two. It should be read as a companion to the SNNS User Manual, available
from the WSI web site:

 http://www-ra.informatik.uni-tuebingen.de/SNNS/

We suggest that you first read the SNNS Manual, in order to become acquainted with the the-
ory of neural networks, the way they are implemented in the SNNS kernel and to get a basic
idea of the SNNS graphical user interface. If you are already familiar with SNNS, you can
skip this step and start directly with this manual.

In the next chapter, you will find the license agreement. Please read it carefully and make sure
that it is acceptable for you before installing and using JavaNNS. The installation process dif-
fers slightly for Windows and Unix machines and is described separately for each case. After
installing, we suggest that you follow our quick tour through the simulator to get the first
impression of how it is organized and used. The rest of the manual covers in more detail creat-
ing, manipulation and analyzing neural networks. You can skim it in the first reading and use
it later as a reference.

5

2. Licensing and Acknowledgements
JavaNNS is Copyright (c) 1996-2001 JavaNNS Group, Wilhelm-Schickard-Institute for Com-
puter Science (WSI), University of Tübingen, Sand 1, 72076 Tübingen, Germany. It uses the
kernel of SNNS (Stuttgart Neural Network Simulator), which is Copyright (c) 1990-95 SNNS
Group, Institute for Parallel and Distributed High-Performance Systems (IPVR), University of
Stuttgart, Breitwiesenstrasse 20-22, 70565 Stuttgart, Germany.

Currently, JavaNNS is distributed by the University of Tübingen and only as a binary.
Although it is distributed free of charge, please note that it is NOT PUBLIC DOMAIN.

The JavaNNS License is gives you the freedom to give away verbatim copies of the JavaNNS
distribution (which include the license). We do not allow modified copies of our software or
software derived from it to be distributed. You may, however, distribute your modifications as
separate files along with our unmodified JavaNNS software. We encourage users to send
changes and improvements which would benefit many other users to us so that all users may
receive these improvements in a later version. The restriction not to distribute modified copies
is also useful to prevent bug reports from someone else's modifications.

For our protection, we want to make certain that everyone understands that there is NO WAR-
RANTY OF ANY KIND for the JavaNNS software.

2.1. License Agreement
1. This License Agreement applies to the JavaNNS program and all accompanying programs

and files that are distributed with a notice placed by the copyright holder saying it may be
distributed under the terms of the JavaNNS License. 'JavaNNS', below, refers to any such
program or work, and a 'work based on JavaNNS' means either JavaNNS or any work con-
taining JavaNNS or a portion of it, either verbatim or with modifications. Each licensee is
addressed as 'you'.

2. You may copy and distribute verbatim copies of the JavaNNS distribution as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty, keep intact all the notices
that refer to this License and to the absence of any warranty, and give any other recipients
of JavaNNS a copy of this license along with JavaNNS.

3. You may modify your copy or copies of JavaNNS or any portion of it only for your own
use. You may not distribute modified copies of JavaNNS. You may, however, distribute
your modifications as separate files (e.,g. new network or pattern files) along with our
unmodified JavaNNS software. We also encourage users to send changes and improve-
ments which would benefit many other users to us so that all users may receive these
improvements in a later version. The restriction not to distribute modified copies is also
useful to prevent bug reports from someone else's modifications.

4. If you distribute copies of JavaNNS you may not charge anything except the cost for the
media and a fair estimate of the costs of computer time or network time directly attribut-
able to the copying.

5. You may not copy, modify, sublicense, distribute or transfer JavaNNS except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, distribute
or transfer JavaNNS is void, and will automatically terminate your rights to use JavaNNS
under this License. However, parties who have received copies, or rights to use copies,
from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

6

6. By copying, distributing or modifying JavaNNS (or any work based on javaNNS) you
indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute JavaNNS (or any work based on JavaNNS), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify
JavaNNS subject to these terms and conditions. You may not impose any further restric-
tions on the recipients’ exercise of the rights granted herein.

8. Because JavaNNS is licensed free of charge, there is no warranty for it, to the extent per-
mitted by applicable law. The copyright holders and/or other parties provide JavaNNS ’as
is’ without warranty of any kind, either expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The entire
risk as to the quality and performance of JavaNNS is with you. Should the program prove
defective, you assume the cost of all necessary servicing, repair or correction.

9. In no event will any copyright holder, or any other party who may redistribute JavaNNS as
permitted above, be liable to you for damages, including any general, special, incidental or
consequential damages arising out of the use or inability to use JavaNNS (including but
not limited to loss of data or data being rendered inaccurate or losses sustained by you or
third parties or a failure of JavaNNS to operate with any other programs), even if such
holder or other party has been advised of the possibility of such damages.

2.2. Acknowledgments
JavaNNS is a joint effort of a large number of people, computer science students, research
assistants as well as faculty members at the Institute for Parallel and Distributed High Perfor-
mance Systems (IPVR) at University of Stuttgart, the Wilhelm Schickard Institute of Com-
puter Science at the University of Tübingen, and the European Particle Research Lab CERN in
Geneva.

The project to develop an efficient and portable neural network simulator which later became
SNNS was lead since 1989 by Dr. Andreas Zell, who designed SNNS and acted as advisor for
more than two dozen independent research and Master's thesis projects that made up SNNS,
JavaNNS and some of its applications. Over time the source grew to a total size of now 5MB
in 160.000+ lines of code. Research began under the supervision of Prof. Dr. Andreas Reuter
and Prof. Dr. Paul Levi. We are grateful for their support and for providing us with the neces-
sary computer and network equipment.

The following persons were directly involved in the SNNS project. They are listed in the order
in which they joined the SNNS team.

Table 1: SNNS and JavaNNS project members

Andreas Zell Design of the SNNS simulator, SNNS project team leader.

Niels Mache SNNS simulator kernel (really the heart of SNNS), parallel
SNNS kernel on MasPar MP-1216.

Tilman Sommer original version of the graphical user interface XGUI with
integrated network editor, PostScript printing.

Ralf Hübner SNNS simulator 3D graphical user interface, user interface
development (version 2.0 to 3.0).

Thomas Korb SNNS network compiler and network description language
Nessus.

7

There are a number of important external contributions by: Martin Reczko, Martin Riedmiller,
Mark Seemann, Marcus Ritt, Jamie DeCoster Jochen Biedermann, Joachim Danz, Christian
Wehrfritz Randolf Werner, Michael Berthold and Bruno Orsier.

Michael Vogt Radial Basis Functions. Together with Günter Mamier imple-
mentation of Time Delay Networks. Definition of the new pat-
tern format.

Günter Mamier SNNS visualization and analyzing tools. Implementation of
the batch execution capability. Together with Michael Vogt
implementation of the new pattern handling. Compilation and
continuous update of the user manual. Maintenance of the ftp
server. Bugfixes and installation of external contributions.

Michael Schmalzl SNNS network creation tool Bignet, implementation of Cas-
cade Correlation, and printed character recognition with
SNNS.

Kai-Uwe Herrmann ART models ART1, ART2, ARTMAP and modification of the
BigNet tool.

Artemis Hatzigeorgiou documentation about the SNNS project, learning procedure
Backpercolation 1.

Dietmar Posselt ANSI-C translation of SNNS.

Sven Döring ANSI-C translation of SNNS and source code maintenance.
Implementation of distributed kernel for workstation clusters.

Tobias Soyez Jordan and Elman networks, implementation of the network
analyzer.

Tobias Schreiner Network pruning algorithms.

Bernward Kett Redesign of C-code generator snns2c.

Jens Wieland Design and implementation of batchman.

Jürgen Gatter Implementation of TACOMA and some modifications of Cas-
cade Correlation.

Igor Fischer Java user interface design and development.

Fabian Hennecke Java user interface development.

Christian Bannes Java user interface support

Hans Rudolph JavaNNS kernel port for Mac OS X

Table 1: SNNS and JavaNNS project members

8

3. Installation
To be able to use JavaNNS, you have to have Java Runtime Environment (or JDK, which con-
tains it) installed. JavaNNS has been tested to work with Java 1.3, Java 1.2.2 might also work,
though problems with file management have been reported in certain environments.

JavaNNS for Windows platforms is distributed as the zip file JavaNNS-Win.zip, and as
gzipped tar archive, like JavaNNS-LinuxIntel.tar.gz and JavaNNS-Solaris.tar.gz for other
operating systems. Unzip (unpack) the file into a folder of your choice. You should get:

1. JavaNNS.jar - the Java archive file containing the JavaNNS user interface classes
2. examples - folder with example networks, patterns etc.
3. manual - folder containing this manual

JavaNNS needs the kernel library in order to work properly. If you run JavaNNS the first time
on your machine a dialog will appear to ask you where to install the library.

JavaNNS then rememberes the location of the library by storing it in the file JavaNNS.prop-
erties, which is generated and placed into your home directory (Personal in Windows termi-
nology). If you which to change properties, use Properties editor in the JavaNNS View menu.

You can delete the library or the JavaNNS.properties file any time you want. In that case the
library installation dialog will appear the next time you start JavaNNS.

3.1. Running JavaNNS
That’s all! Now you can start JavaNNS by typing:

java -jar JavaNNS.jar

from the command prompt or by clicking the JavaNNS.jar file from the graphical user inter-
face.

9

4. A Quick Tour of JavaNNS
JavaNNS is a simulator for artificial neural networks, i.e. computational models inspired by
biological neural networks. It enables you to use predefined networks or create your own, to
train and to analyze them. If any of these terms is unknown to you, please refer to a book about
neural networks or to the SNNS User Manual - this manual describes only the usage of
JavaNNS.

4.1. Starting JavaNNS
To begin the tour, let’s start JavaNNS, as described in "Installing": type java -jar JavaNNS.jar
or, if using Windows, click the JavaNNS.bat file. After starting the program, its main window
opens. As we have started the program no parameters in the command line, the window is
empty, containing only the usual menu bar. Also, no network files have been loaded.

4.2. Loading Files
Use File/Open menu to open an example file: navigate to the examples directory and open the
files xor_untrained.net, and xor.pat - a simple network and a corresponding pattern file.

4.3. View Network
The main window still remains empty, so choose View/Network to display the network. You
should see a new window appearing, schematically showing a network, consisting of 4 units
(neurons) and links between them, in its main part. Neurons and links have different colors,
representing different values of unit activations and link weights. The colored bar on the left
edge of the window shows which color corresponds to which value and can be used as
reminder. The colors - and appearance in general - can be adjusted through View/Display Set-
tings, which corresponds to the Display/Setup window in SNNS.

4.4. Training Network
Let us now train the network - reprogram its weights, so that it gives the desired output when
presented an input pattern. For that purpose, open the Control Panel in the Tools menu. The
Control Panel is, as in the SNNS, the most important window in the simulator, because almost
all modifications and manipulations of the network are done through it. We shall also open the
Error Graph window, in order to watch the training progress. Finally, to receive some textual
and numerical information, we can open the Log window. Both are accessible through the
View menu.

A sample screen shot with the windows open is shown in Figure 1.

The Control Panel is, contrary to the one in SNNS, divided into six tabs, each containing con-
trols for specific purpose. For this introduction, let us switch directly to the learning tab. Here,
the user can choose the learning function, set its parameters, number of learning cycles and
update steps and finally perform network initialization and learning. The classic Backpropaga-
tion (equals Std_Backpropagation in SNNS) is the default learning function. As you can see,
for each learning function default parameters are provided.

Learning is performed by pressing one of the buttons: "Learn current" which performs training
with the currently selected pattern, and "Learn all", which trains the network with all patterns
from the pattern set. During learning, the error graph displays the error curve - the type of
error to be drawn is set on the left edge of the window. The error is also written into the log
window.

10
4.5. Analyzing Network
For analyzing the network and its performance, tools like Analyzer (in the Tools menu) and
Projection (in the View menu), already familiar to SNNS users, can be used. For Projection,
two input units and a hidden or output unit have to be selected in order for the menu item to
become enabled. The Projection Panel than displays the activation of the hidden or output unit
as a function of the two inputs. The activation is represented by color, so a colored rectangle is
obtained. Analyzer is used to show output or activation of a unit as a function of other unit’s
activation or of the input pattern. Its usage is similar to the Analyze panel in the SNNS.

4.6. Creating a Network
Now let’s create a network of our own. Choose File/New to remove the current network from
the simulator. Then, choose Create/Layers from the Tools menu. A window resembling the
Bignet tool of SNNS appears. Choose width and height "1", unit type "Input" and click "Cre-
ate" to create a new layer. For the next layer, set height to five and the unit type to "Hidden"
and click "Create" again. Finally, create the output layer with the height of one and unit type
"Output" and close the window. To connect the created units, use Create/Connections from the
Tools menu. Simply choose "Connect feed-forward" and click "Connect". Doing that, you
have created a simple feed-forward neural network, with one input, five hidden and one output
unit. You can now close the Connections window, too.

4.7. Graphical Network Display
You can arrange units on the display manually, by clicking and dragging them with the mouse.
In fact, clicking a unit selects it, and dragging moves all selected units. To deselect a unit,
press the CTRL-Key on the keyboard and click it while still holding the key pressed. Using

Figure 1: JavaNNS with XOR network, error graph, control and log panel

11
View/View Settings, tab Units and Links, you can choose what to display above and under
each unit. Make sure that "Name" is selected as top label. Since the units have just been cre-
ated, they are all called "noName". To change the names, choose "Names" from the Edit
menu. The top labels turn to text fields. Use the mouse to place the caret into each one and
enter some names. After you have finished, press "Enter" or click in an empty are of the dis-
play to turn the text fields to labels again.

4.8. Training and Validation Pattern Sets
To see how two pattern sets can be used for training and validation, load two pattern sets from
"examples" directory: trainMAP.pat and validMAP.pat. In the Control Panel, tab "Patterns",
select trainMap as the training set and validMAP as the validation set. Switch back to the
"Learning" tab and train the network. During training two curves are displayed in the Error
Graph: one, who’s color depends on the number of already displayed curves and which repre-
sents the error of the training set, and the other, pink one, which represents the error of the val-
idation set. The validation set is normally used to avoid overtraining of a network. For more
information refer to the SNNS User Manual and other neural networks literature.

12
5. Network Creation and Editing

5.1. Network View and Display Settings
Although not necessary, it is
recommended that a network
view is open when creating and
editing networks. Network
view is opened through View/
Network menu. The network
view displays a visual repre-
sentation of the network, which
comprises of units and connec-
tions (links) between them.
Units are drawn as colored
squares with 16 pixels side
length, and connections as col-
ored lines. For both units and
links the color represents a
value: activation for units and
weight for links. The colored
bar on the left edge of the net-
work view serves as a quick reminder for color-to-value correspondence. (Figure 2)

Units are placed along an invisible grid in the network view. Optionally, above and below each
unit diverse unit properties can be displayed. Which ones, as well as grid size, chroma coding
for units and links and some more data are set in the Display Settings panel, accessible from
the View menu. This panel corresponds to the Display/Setup panel in SNNS.

Display Settings comprise of two tabs: General and
Units&Links (or SOM for Kohonen tool). In tab
General, grid size (in pixels), subnet number and
chroma codes for different values can be set. In
Units&Links, the user can set which properties, like
name, unit activation etc. are to be shown above
(Top label) and below (Base label) of each unit.
Also, the user can decide if the connections are to be
shown, if their weights are to be displayed numeri-
cally and if the direction arrows should be drawn.
Sliders "Maximum expected value" and "Maximum
expected weight" control the chroma coding for
units and links, since they determine which value
corresponds to the full color, as set in the "General"
tab. Minimum values are simply taken to be nega-
tives of the maximums, and for values between the
color is interpolated. The Slider "Weakest visible
link" is self-explanatory and helps keeping the net-
work view more comprehensible.

Figure 2: Network view

Figure 3: Display Settings - General

13
Since more than one network view can be open at
the same time, Display Settings refer to the currently
selected one.

5.2. Tools for Creating Networks
Networks are created using two tools from the
"Tools" menu, both from the "Create" submenu:
"Layers" and "Connections". They together corre-
spond to the "Bignet" tool in SNNS.

In JavaNNS layer has a different meaning as in the
SNNS. In JavaNNS, layer corresponds to a physical
layer of units that is being created. When creating
layers, width and height determine the number of
units in horizontal and vertical direction for the
layer. Top left position is updated automatically, but
can also be entered manually, and controls the layer’s
position in the display area. For all the data - width,
height and coordinates of the top left position - the
measuring unit is "grid size unit", which is set in the View/Display Settings panel.

In "Unit detail" segment of the window, the unit type (e.g. Input or Hidden), activation func-
tion of the units (Logistic by default), output function of the units (Identity by default), the
layer number and the subnet number are set.

The "Connections" window provides for creating links
(connections) between units. Three different ways are
possible for creating links: by manually selecting units
to connect ("Connect selected units"), by automatically
connecting the whole network in a feed-forward style
("Connect feed-forward") and by interconnecting those
in the same layer (Auto-associative). In case of feed-
forward networks, shortcut connections (links connect-
ing units form non-adjacent layers) can optionally be
created. For auto-associative networks, self-connec-
tions (feedback connections from the output to the
input of a same unit) can be allowed.

Except for automatic generation of feed-forward con-
nections, the user has to select units to be connected. Units are selected using the mouse, either
by clicking each unit, or by clicking the mouse and dragging a rectangle around units to be
selected. Units are deselected by clicking them while holding the CTRL key pressed. A simple
click in an empty area in a network view deselects all units.

Figure 4: Display Settings - Units and
Links

Figure 5: Create Layers tool

14
Connecting selected units is a two-step process. In the first step,
the user selects units where the connections are to originate
(source units) and presses the button "Mark selected units as
source". In the second step, the user selects the receiving units
(targets) and presses the button, which is now labeled "Connect
source with selected units". For auto-associative connections it
suffices to select the desired units and press the "Connect
selected units" button.

Selected units can be dragged with the mouse in order to
change their positions.

5.3. Editing Units
Existing units can be edited by selecting them and then choos-
ing Unit Properties from the Edit menu or Edit Units in the con-
text-sensitive menu, which is accessed by pressing the right
mouse button while over a unit. An extra window appears, displaying all editable unit proper-
ties, like name, type, activation etc. This method allows only for setting the same values for all
selected units. Alternatively, the user can edit values displayed as top and base labels of each
unit individually. For that purpose, the user has to choose from the Edit menu which property
he or she wants to edit. The labels displaying the property turn to entry fields, which can now
be edited. The fields are selected by the mouse and can be traversed by pressing the Tab key.
Pressing Enter accepts changes and turns the fields back to labels.

Changing activation values of units is useful if patterns are created manually.

Figure 6: Create Links tool

15
6. Pattern Management
Like in SNNS, patterns are organized in
pattern sets, which are stored as text files.
They can be loaded using the Open option
and saved using "Save data" (not Save!)
from the File menu. Further manipulation is
primarily performed from the Control Panel
(accessible from the Tools menu), in the
"Patterns" tab. Some simple manipulations
(adding, modifying, deleting) can be also
performed from the Patterns menu in the
main menu bar.

In the Control Panel, a pattern remapping
function and its parameters can be selected.
The two combo boxes - Training set and Validation set - are used for selecting the active train-
ing and validation set, respectively. Also, when new pattern sets are created (by pressing the
second button next to each of the combo boxes), the corresponding combo box becomes edit-
able, so that the new pattern set can be given a name. The other button, adjacent to the combo
box, deletes the current pattern set from the memory.

Near the right edge of the panel, in the pre-last row, three more buttons serve for modifying
the current pattern set. Their function, from left to right, is: add, copy and delete pattern. Add
creates a new pattern from current input and output unit activations and adds it to the current
pattern set. Copy creates a new pattern, which is a verbatim copy of the currently selected one,
and adds it to the pattern set. Finally, the delete button deletes the currently selected pattern.

The current pattern is identified by its ordinal number in the pattern set. This number is dis-
played in a text field between arrow buttons in the bottom right corner of the panel. The arrow
buttons provide for navigating through the patterns in the currently selected set.

Some patterns can contain subpatterns of variable length. In that case, the tab "Subpatterns" is
enabled and provides for defining size and shape of subpatterns, as well as for navigating
through them. This corresponds to the Subpattern window in SNNS.

Propagating patterns through the network is done in the Update tab of the Control Panel. Same
navigational controls are provided as in the Patterns tab. Besides, the button between the
arrows propagates the current pattern through the network.

The same panel is also used for selecting the updating function and its parameters to be used in
training.

Figure 7: Control Panel - Patterns

16
7. Training and Pruning Networks
Training is also performed through the
Control Panel. In the Initializing tab, an ini-
tialization function and its parameters can
be set. The Init button (also available in the
Learning tab) performs the initialization.

Under the Learning tab, the user can choose
the learning function, set its parameters,
number of learning cycles and update steps
and finally perform network initialization
and learning. The classic Backpropagation
(equals Std_Backpropagation in SNNS) is
the default learning function. For each
learning function default parameters are
provided.

The "Learn current" button performs train-
ing with the currently selected pattern and
"Learn all" with all patterns from the pat-
tern set. In order to monitor learning
progress, it is useful to open the Error
Graph and/or Log window, both available
from the View menu. During learning, the
error graph displays the error curve. The
type of the error to be drawn is set through
the middle button located on the left edge
of the window. The arrow buttons near the
axes are used for scaling. The two buttons
in the left bottom corner clear the error
graph and toggle grid, respectively.

During training, the error is also written into the log window. Also, many other useful infor-
mation about the network are written there on diverse occasions. The log window corresponds
roughly to the command shell window from which SNNS is started in a Unix system.

Options and controls for pruning networks
are found under the Pruning tab in the Con-
trol Panel. Its contents corresponds mostly
to the Pruning window in SNNS. However,
contrary to the SNNS, the user does not
have to set the learning function to Pruning-
FeedForward. In JavaNNS it is done auto-
matically and transparently for him/her.
The learning function, as set under the
Learning tab, as well as number of cycles,
correspond to the data entered in "General
parameters for Training" section of the
SNNS’ Pruning window. In JavaNNS, prun-
ing is performed by pressing the Prune button.

Figure 8: Control Panel - Init

Figure 9: Control Panel - Learning

Figure 10: Control Panel - Pruning

17
Cascade correlation and TACOMA learning are the
only exceptions to the concept of the Control Panel
being the central place for manipulating networks.
Because of the large number of parameters needed by
the two learning methods, a separate window, accessi-
ble from the Tools menu is used. Contrary to SNNS,
where parameters for cascade correlation and
TACOMA are dispersed between the Control Panel and
the Cascade window, in JavaNNS the Cascade window
alone covers all data and parameters needed for apply-
ing the two learning algorithms.

The window is divided into six tabs. Tabs "General",
"Modification" and "Learn" cover the parameters set in
SNNS in the section "General Parameters for Cascade"
of the Cascade window. Under the "Lear" tab of the
JavaNNS Cascade window, the learning function,
together with its parameters and the maximal number of
cascades (hidden units generated during learning) are
set. The "Init" tab is introduced for convenience and
provides for initializing network. Tabs "Candidates"
and "Output" correspond to "Parameters for Candidate
Units" and "Parameters for Output Units" sections in
the SNNS window. The default learning method
invoked from the window is cascade correlation,
TACOMA can be set as a modification under the corresponding tab.

Figure 11: Cascade Correlation and
TACOMA - General

Figure 12: Cascade Correlation and
TACOMA - Learning

18
8. Analyzing Networks
Weights and Projection panels, accessible
through the View menu, and Analyzer, accessi-
ble from the Tools menu, can be used for get-
ting insight into a network. All the panels
correspond to their SNNS counterparts and
differ only in appearance.

8.1. Projection Panel
The Projection panel shows activation of a hid-
den or output unit as a function of activations
of two input units. The panel can only be
opened when the three units are selected in a
network view. The activations of the input
units are drawn on the x- and y-axis, while cor-
responding activations of the output unit are
represented by different pixel colors. For the
chroma coding, the same values as for the network view apply.

Arrows at the panel edges are used for moving
the projection window in the input space. The
two buttons on in the top left corner are used
for zooming, and the buttons in the bottom left
corner for adjusting the view resolution. Zoom-
ing can also be performed manually, by drag-
ging a rectangle in the projection area.

8.2. Weights Panel
The Weights panel presents link weights as col-
ored rectangles. The x-axis is used for source
units and the y-axis for the target units of the
links. The two buttons at the panel bottom are
used for toggling grid and for auto zoom for
optimal display. As in the projection panel,
zooming can be performed manually.

Figure 13: Projection panel

Figure 14: Weights panel

19
8.3. Analyzer
The Analyzer is used to show output or activation
of a unit as a function of other unit’s activation or
of the input pattern. Its usage is similar to the
Analyze panel in the SNNS. The control buttons
are also familiar and have the same function as in
the Error Graph, Projection and Weights panel.

Figure 15: Analyzer panel

20
9. Loading, Saving and Printing
File loading, saving and printing of
results is performed through the
File menu. Whereas "Open" can be
used for loading any type of file
(network, pattern, text...), "Save",
as well as "Save as" are used only
for saving the current network.
Other file types are saved through
"Save data", by choosing the appro-
priate file type in the combo box at
the bottom of the dialog window.
For result files, additional options
(start and end pattern, inclusion of
input and output files and file cre-
ation mode) like in SNNS can be
set.

When choosing files for loading in the file dialog window it is possible to select multiple files,
even of different types. That way, the user can load a network, configuration and multiple pat-
tern files in only one step. (This currently doesn’t work in the Linux implementation)

Print always refers to the currently active window. Therefore, anything that can be displayed
in JavaNNS can also be printed by making the desired window active (i.e. clicking it with the
mouse) and choosing "Print" from the File menu.

Figure 16: File Save dialog

21
Appendix A: Kernel File Interface

A.1. The ASCII Network File Format
The ASCII representation of a network consists of the following parts:

• a header, which contains information about the net
• the definition of the teaching function
• the definition of the sites
• the definition of cell types
• the definition of the default values for cells
• the enumeration of the cells with all their characteristics
• the list of connections
• a list of subnet numbers
• a list of layer numbers
All parts, except the header and the enumeration of the cells, may be omitted. Each part may
also be empty. It then consists only of the part title, the header line and the boarder marks (e.g.:
----|---|------).

Entries in the site definition section do not contain any empty columns. The only empty col-
umn in the type definition section may be the sites column, in which case the cells of this type
do not have sites.

Entries in the unit definition section have at least the columns no. (cell number) and position
filled. The entries (rows) are sorted by increasing cell number. If column typeName is filled,
the columns act func, out func, and sites remain empty.

Entries in the connection definition section have all columns filled. The respective cell does
not have a site, if the column site is empty. The entries are sorted by increasing number of the
target cell (column target). Each entry may have multiple entries in the column sources. In this
case, the entries (number of the source cell and the connection strength) are separated by a
comma and a blank, or by a comma and a newline (see example in the Appendix B).

The file may contain comment lines. Each line beginning with # is skipped by the SNNS-ker-
nel.

A.2. Form of the Network File Eries
Columns are separated by the string " " (without ") . A row never exceeds 250 characters.

Strings may have arbitrary length. The compiler determines the length of each row containing
strings (maximum string length + 2). Within the columns, the strings are stored left adjusted.
Strings may not contain blanks, but all special characters except |. The first character of a
string has to be a letter.

Integers may have an arbitrary number of digits. Cell numbers arealways positive and not
zero. Position coordinates may be positive or negative. The compiler determines the length of
each row containing integers (maximum digit number + 2). Within the columns, the numbers
are stored right adjusted.

Floats are always stored in fixed length with the format Vx.yyyyy, where V is the sign (+, - or
blank), x is 0 or 1 and y is the rational part (5 digits behind the decimal point).

Rows containing floats are therefore always 10 characters long (8 + 1 blank on each side).

If a row contains several sites in the type or unit definition section, they are wri ten below each
other. They are separated in the following way: Directly after the first site fo lows a comma

22
and a newline \n. The next line starts with an arbitrary number of blanks or tabs in front of the
next site.

The source of a connection is described by a pair, the cell number and the strength of the con-
nection. It always has the format nnn:Vx.yyyyy with the following meaning:

• nnn Number of the source
• Vx.yyyyy Strength of the connection as a float value (format as discribed above)
The compiler determines the width of the column nnn by the highest cell number present. The
cell numbers are written into the column right adjusted (according to the rules for integers).
The column Vx.yyyyy has fixed width. Several source pairs in an entry to the connection defi-
nition section/ are separated by a comma and a blank. If the list of source pairs exceeds the
length of one line, the line has to be parted after the following rule:

• Separation is always between pairs, never within them.
• The comma between pairs is always directly behind the last pair,i.e. remains in the old

line.
 After a newline (\n) an arbitrary number of blanks or tabs may precede the next pair.

A.3. Grammar of the Network Files

A.3.1.Conventions

A.3.1.1. Lexical Elements of the Grammar
The lexical elements of the grammar which defines network files are listed as regular expre-
sions. The first column lists the name of the symbol, the second the regular expresion defining
it. The third column may contain comments.

• All terminals (characters) are put between ". . .".
• Elements of sets are put between square brackets. Within the brackets, the characters rep-

resent themselves (even without ", and - defines a range of values. The class of digits is
defined, e.g. as ["0"-"9"].

• Characters can be combined into groups with parenteses ().
• x* means, that the character or group x can occur zero or more times.
• x+ means, that the character or group x must occur at least once, but may occur several

times.
• x? means, that x can be omitted.
• x{n} means, that x has to occur exactly n times.
• x|y means, that either x or y has to occur.
• *, + and {} bind
• strongest, ? is second, | binds weakest.
• Groups or classes of characters are treated like a single character with respect to priority.

A.3.1.2.Definition of the Grammar
The Grammar defining the interface is listed in a special form of EBNF.

• Parts between square brackets [] are facultative.
• | separates alternatives (like with terminal symbols).
• {x} means, that x may occur zero or more times.
• CSTRING is everything that is recognized as string by the C programming language.

23
A.3.2.Terminal Symbols
WHITESPACE {" "|"\n"|"\t"} /* whitespaces */

BLANKS_TABS {" "|"\t"} /* only blanks or tabs */

W_COL_SEP (" "|"\n"|"\t") {" "|"\n"|"\t"} "|" {" "|"\n"|"\t"}

/* at least one blank and the column separation */

COL_SEP {" "|"\n"|"\t"} "|" {" "|"\n"|"\t"} /* column separation */

COMMA {" "|"\n"|"\t"} "," {" "|"\n"|"\t"} /* at least the comma */

EOL {" "|"\n"|"\t"} "\n" {" "|"\n"|"\t"} /* at least "\n" */

CUT {" "|"\n"|"\t"} (" "|"\n"|"\t") {" "|"\n"|"\t"}

/* at least a blank, "\t", or "\n" */

COLON ":"

/* separation lines for different tables */

TWO_COLUMN_LINE "-"+"|""-"+

THREE_COLUMN_LINE "-"+"|""-"+"|""-"+

FOUR_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+

SIX_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

SEVEN_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

TEN_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

 "|""-"+"|""-"+"|""-"+

COMMENT {{" "|"\n"|"\t"} "#" CSTRING "\n" {" "|"\n"|"\t"}}

VERSION "V1.4-3D" | "V2.1" | "V3.0" /* version of SNNS */

SNNS "SNNS network definition file" /* output file header */

/* eleven different headers */

GENERATED_AT "generated at"

NETWORK_NAME "network name :"

SOURCE_FILES "source files"

NO.OF_UNITES "no. of unites :"

NO.OF_CONNECTIONS "no. of connections :"

NO.OF_UNIT_TYPES "no. of unit types :"

NO.OF_SITE_TYPES "no. of site types :"

LEARNING_FUNCTION "learning function :"

PRUNING_FUNCTION "pruning function :"

FF_LEARNING_FUNCTION "subordinate learning function :"

UPDATE_FUNCTION "update function :"

/* titles of the different sections */

24
UNIT_SECTION_TITLE "unit definition section"

DEFAULT_SECTION_TITLE "unit default section"

SITE_SECTION_TITLE "site definition section"

TYPE_SECTION_TITLE "type definition section"

CONNECTION_SECTION_TITLE "connection definition section"

LAYER_SECTION_TITLE "layer definition section"

SUBNET_SECTION_TITLE "subnet definition section"

TRANSLATION_SECTION_TITLE "3D translation section"

TIME_DELAY_SECTION_TITLE "time delay section"

/* column-titles of the different tables */

NO "no."

TYPE_NAME "type name"

UNIT_NAME "unit name"

ACT "act"

BIAS "bias"

ST "st"

POSITION "position"

SUBNET "subnet"

LAYER "layer"

ACT_FUNC "act func"

OUT_FUNC "out func"

SITES "sites"

SITE_NAME "site name"

SITE_FUNCTION "site function"

NAME "name"

TARGET "target"

SITE "site"

SOURCE:WEIGHT "source:weight"

UNIT_NO "unitNo."

DELTA_X "delta x"

DELTA_Y "delta y"

Z "z"

LLN "LLN"

LUN "LUN"

TROFF "Troff"

SOFF "Soff"

CTYPE "Ctype"

INTEGER ["0"-"9"]+ /*integer */

SFLOAT ["+" | " " | "-"] ["1" | "0"] "." ["0"-"9"]{5} /*signed float*/

STRING ("A"-"Z" | "a"-"z" | "|")+ /*string */

25
A.3.3.Grammar:
out_file ::= file_header sections

file_header := WHITESPACE COMMENT h_snns EOL COMMENT h_generated_at EOL

COMMENT h_network_name EOL COMMENT h_source_files EOL

COMMENT h_no.of_unites EOL COMMENT h_no.of_connections EOL

COMMENT h_no.of_unit_types EOL COMMENT h_no.of_site_types EOL

COMMENT h_learning_function EOL COMMENT h_update_function EOL

COMMENT h_pruning_function EOL

COMMENT ff_learning_function EOL

/* parts of the file-header */

h_snns ::= SNNS BLANKS_TABS VERSION

h_generated_at ::= GENERATED_AT BLANKS_TABS CSTRING

h_network_name ::= NETWORK_NAME BLANKS_TABS STRING

h_source_files ::= SOURCE_FILES [BLANKS_TABS COLON BLANKS_TABS CSTRING]

h_no.of_unites ::= NO.OF_UNITES BLANKS_TABS INTEGER

h_no.of_connections ::= NO.OF_CONNECTIONS BLANKS_TABS INTEGER

h_no.of_unit_types ::= NO.OF_UNIT_TYPES BLANKS_TABS INTEGER

h_no.of_site_types ::= NO.OF_SITE_TYPES BLANKS_TABS INTEGER

h_learning_function ::= LEARNING_FUNCTION BLANKS_TABS STRING

h_pruning_function ::= PRUNING_FUNCTION BLANKS_TABS STRING

h_ff_learning_function ::= FF_LEARNING_FUNCTION BLANKS_TABS STRING

h_update_function ::= UPDATE_FUNCTION BLANKS_TABS STRING

sections ::= COMMENT unit_section [COMMENT default_section]

[COMMENT site_section] [COMMENT type_section]

 [COMMENT subnet_section] [COMMENT conn_section]

 [COMMENT layer_section] [COMMENT trans_section]

 [COMMENT time_delay_section] COMMENT

/* unit default section */

default_section ::= DEFAULT_SECTION_TITLE CUT COMMENT WHITESPACE

default_block

default_block ::= default_header SEVEN_COLUMN_LINE EOL

 {COMMENT default_def} SEVEN_COLUMN_LINE EOL

default_header ::= ACT COL_SEP BIAS COL_SEP ST COL_SEP SUBNET COL_SEP

LAYER COL_SEP ACT_FUNC COL_SEP OUT_FUNC CUT

default_def ::= SFLOAT W_COL_SEP SFLOAT W_COL_SEP STRING W_COL_SEP

INTEGER W_COL_SEP INTEGER W_COL_SEP STRING W_COL_SEP

STRING CUT

26
/* site definition section */

site_section ::= SITE_SECTION_TITLE CUT COMMENT WHITESPACE site_block

site_block ::= site_header TWO_COLUMN_LINE EOL {COMMENT site_def}

TWO_COLUMN_LINE EOL

site_header ::= SITE_NAME SITE_FUNCTION CUT

site_def ::= STRING W_COL_SEP STRING CUT

/* type definition section */

type_section ::= TYPE_SECTION_TITLE CUT COMMENT WHITESPACE type_block

type_block ::= type_header FOUR_COLUMN_LINE EOL {COMMENT type_def}

FOUR_COLUMN_LINE EOL

type_header ::= NAME COL_SEP ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES

CUT

type_def ::= STRING W_COL_SEP STRING W_COL_SEP STRING W_COL_SEP

[{STRING COMMA} STRING] CUT

/* subnet definition section */

subnet_section ::= SUBNET_SECTION_TITLE CUT COMMENT WHITESPACE

subnet_block

subnet_block ::= subnet_header TWO_COLUMN_LINE EOL {COMMENT subnet_def}

TWO_COLUMN_LINE EOL

subnet_header ::= SUBNET COL_SEP UNIT_NO CUT

subnet_def ::= INTEGER W_COL_SEP {INTEGER COMMA} INTEGER CUT

/* unit definition section /*

unit_section ::= UNIT_SECTION_TITLE CUT COMMENT WHITESPACE unit_block

unit_block ::= unit_header TEN_COLUMN_LINE EOL {COMMENT unit_def}

TEN_COLUMN_LINE EOL

unit_header ::= NO COL_SEP TYPE_NAME COL_SEP UNIT_NAME COL_SEP

ACT COL_SEP BIAS COL_SEP ST COL_SEP POSITION COL_SEP

ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES CUT

unit_def ::= INTEGER W_COL_SEP ((STRING W_COL_SEP) | COL_SEP)

((STRING W_COL_SEP) | COL_SEP) ((SFLOAT W_COL_SEP) | COL_SEP)

((SFLOAT W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP)

INTEGER COMMENT INTEGER COMMENT INTEGER W_COL_SEP

((STRING W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP)

[{STRING COMMA} STRING]

27
/* connection definition section */

connection_section ::= CONNECTION_SECTION_TITLE CUT

COMMENT WHITESPACE connection_block

connection_block ::= connection_header THREE_COLUMN_LINE EOL

{COMMENT connection_def} THREE_COLUMN_LINE EOL

connection_header ::= TARGET COL_SEP SITE COL_SEP SOURCE:WEIGHT CUT

connection_def ::= ((INTEGER W_COL_SEP) | COL_SEP) STRING W_COL_SEP

 {INTEGER WHITESPACE COLON WHITESPACE SFLOAT COMMA}

 INTEGER WHITESPACE COLON WHITESPACE SFLOAT CUT

/* layer definition section */

layer_section ::= LAYER_SECTION_TITLE CUT COMMENT WHITESPACE layer_block

layer_block ::= layer_header TWO_COLUMN_LINE EOL {COMMENT layer_def}

TWO_COLUMN_LINE EOL

layer_header ::= LAYER COL_SEP UNIT_NO CUT

layer_def ::= INTEGER W_COL_SEP {INTEGER COMMENT} INTEGER CUT

/* 3D translation section */

translation_section ::= TRANSLATION_SECTION_TITLE CUT

COMMENT WHITESPACE translation_block

translation_block ::= translation_header THREE_COLUMN_LINE EOL

{COMMENT translation_def} THREE_COLUMN_LINE EOL

translation_header ::= DELTA_X COL_SEP DELTA_Y COL_SEP Z CUT

translation_def ::= INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER

/* time delay section */

td_section ::= TIME_DELAY_SECTION_TITLE CUT COMMENT WHITESPACE

td_block

td_block ::= td_header SIX_COLUMN_LINE EOL {COMMENT td_def}

SIX_COLUMN_LINE EOL

td_header ::= NO COL_SEP LLN COL_SEP LUN COL_SEP

TROFF COL_SEP SOFF COL_SEP CTYPE CUT

td_def ::= INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER W_COL_SEP

INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER W_COL_SEP

A.4. Grammar of the Pattern Files
The typographic conventions used for the pattern file grammar are the same as for the network
file grammar (see section A.3.1.1).

28
A.4.1.Terminal Symbols
WHITE {" " | "\t"}

FREE {^"\n"} /* anything up to EOL */

COMMENT "#" FREE "\n"

L_BRACKET "["

R_BRACKET "]"

INT ["0"-"9"]

V_NUMBER [Vv]{INT}+"."{INT}+ /* version number */

NUMBER [-+]?{{INT}+ | {INT}+{EXP} |{INT}+"."{INT}*({EXP})? |

 {INT}*"."{INT}+({EXP})?}

EXP [Ee][-+]?{INT}+

VERSION_HEADER "SNNS pattern definition file"

GENERATED_AT "generated at" {FREE}* "\n"

NO_OF_PATTERN "No. of patterns" {WHITE}* ":"

NO_OF_INPUT "No. of input units" {WHITE}* ":"

NO_OF_OUTPUT "No. of output units" {WHITE}* ":"

NO_OF_VAR_IDIM "No. of variable input dimensions" {WHITE}* ":"

NO_OF_VAR_ODIM "No. of variable output dimensions" {WHITE}* ":"

MAXIMUM_IDIM "Maximum input dimensions" {WHITE}* ":"

MAXIMUM_ODIM "Maximum output dimensions" {WHITE}* ":"

NO_OF_CLASSES "No. of classes" {WHITE}* ":"

CLASS_REDISTRIB "Class redistribution" {WHITE}* ":"

REMAPFUNCTION "Remap function" {WHITE}* ":"

REMAP_PARAM "Remap parameters" {WHITE}* ":"

A.4.2.Grammar
pattern_file ::= header pattern_list

header ::= VERSION_HEADER V_NUMBER GENERATED_AT NO_OF_PATTERN

NUMBER

i_head [o_head] [vi_head] [vo_head] [cl_head] [rm_head]

i_head ::= NO_OF_INPUT NUMBER

o_head ::= NO_OF_OUTPUT NUMBER

vi_head ::= NO_OF_VAR_IDIM NUMBER MAXIMUM_IDIM actual_dim

vo_head ::= NO_OF_VAR_ODIM NUMBER MAXIMUM_ODIM actual_dim

cl_head ::= NO_OF_CLASSES NUMBER [cl_distrib]

rm_head ::= REMAPFUNCTION NAME [rm_params]

actual_dim ::= L_BRACKET actual_dim_rest R_BRACKET |

 L_BRACKET R_BRACKET

actual_dim_rest ::= NUMBER | actual_dim_rest NUMBER

cl_distrib ::= CLASS_REDISTRIB L_BRACKET paramlist R_BRACKET

rm_params ::= REMAP_PARAM L_BRACKET paramlist R_BRACKET

paramlis ::= NUMBER | paramlist NUMBER

pattern_list ::= pattern | pattern_list pattern

pattern ::= pattern_start pattern_body pattern_class

29
pattern_start ::= [actual_dim]

pattern_body ::= NUMBER | pattern_body NUMBER

pattern_class ::= NUMBER | NAME

30
Appendix B: Example Network File
The lines in the connection definition section have been truncated to 80 characters per line for
printing purposes.

B.1. Example 1:
network name : klass

source files :

no. of units : 71

no. of connections : 610

no. of unit types : 0

no. of site types : 0

learning function : Std_Backpropagation

update function : Topological_Order

unit default section :

act | bias | st | subnet | layer | act func | out func

---------|----------|----|--------|-------|--------------|-------------

 0.00000 | 0.00000 | h | 0 | 1 | Act_Logistic | Out_Identity

---------|----------|----|--------|-------|--------------|-------------

unit definition section :

no. | typeName | unitName | act | bias | st | position | act func | out func | sites

----|----------|----------|----------|----------|----|----------|----------|----------|-------

 1 | | u11 | 1.00000 | 0.00000 | i | 1, 1, 0 |||

 2 | | u12 | 0.00000 | 0.00000 | i | 2, 1, 0 |||

 3 | | u13 | 0.00000 | 0.00000 | i | 3, 1, 0 |||

 4 | | u14 | 0.00000 | 0.00000 | i | 4, 1, 0 |||

 5 | | u15 | 1.00000 | 0.00000 | i | 5, 1, 0 |||

 6 | | u21 | 1.00000 | 0.00000 | i | 1, 2, 0 |||

 7 | | u22 | 1.00000 | 0.00000 | i | 2, 2, 0 |||

 8 | | u23 | 0.00000 | 0.00000 | i | 3, 2, 0 |||

 9 | | u24 | 1.00000 | 0.00000 | i | 4, 2, 0 |||

 10 | | u25 | 1.00000 | 0.00000 | i | 5, 2, 0 |||

 11 | | u31 | 1.00000 | 0.00000 | i | 1, 3, 0 |||

 12 | | u32 | 0.00000 | 0.00000 | i | 2, 3, 0 |||

 13 | | u33 | 1.00000 | 0.00000 | i | 3, 3, 0 |||

 14 | | u34 | 0.00000 | 0.00000 | i | 4, 3, 0 |||

 15 | | u35 | 1.00000 | 0.00000 | i | 5, 3, 0 |||

 16 | | u41 | 1.00000 | 0.00000 | i | 1, 4, 0 |||

 17 | | u42 | 0.00000 | 0.00000 | i | 2, 4, 0 |||

 18 | | u43 | 0.00000 | 0.00000 | i | 3, 4, 0 |||

 19 | | u44 | 0.00000 | 0.00000 | i | 4, 4, 0 |||

 20 | | u45 | 1.00000 | 0.00000 | i | 5, 4, 0 |||

 21 | | u51 | 1.00000 | 0.00000 | i | 1, 5, 0 |||

 22 | | u52 | 0.00000 | 0.00000 | i | 2, 5, 0 |||

 23 | | u53 | 0.00000 | 0.00000 | i | 3, 5, 0 |||

 24 | | u54 | 0.00000 | 0.00000 | i | 4, 5, 0 |||

 25 | | u55 | 1.00000 | 0.00000 | i | 5, 5, 0 |||

 26 | | u61 | 1.00000 | 0.00000 | i | 1, 6, 0 |||

 27 | | u62 | 0.00000 | 0.00000 | i | 2, 6, 0 |||

 28 | | u63 | 0.00000 | 0.00000 | i | 3, 6, 0 |||

 29 | | u64 | 0.00000 | 0.00000 | i | 4, 6, 0 |||

 30 | | u65 | 1.00000 | 0.00000 | i | 5, 6, 0 |||

 31 | | u71 | 1.00000 | 0.00000 | i | 1, 7, 0 |||

 32 | | u72 | 0.00000 | 0.00000 | i | 2, 7, 0 |||

 33 | | u73 | 0.00000 | 0.00000 | i | 3, 7, 0 |||

 34 | | u74 | 0.00000 | 0.00000 | i | 4, 7, 0 |||

 35 | | u75 | 1.00000 | 0.00000 | i | 5, 7, 0 |||

31
 36 | | h1 | 0.99999 | 0.77763 | h | 8, 0, 0 |||

 37 | | h2 | 0.19389 | 2.17683 | h | 8, 1, 0 |||

 38 | | h3 | 1.00000 | 0.63820 | h | 8, 2, 0 |||

 39 | | h4 | 0.99997 | -1.39519 | h | 8, 3, 0 |||

 40 | | h5 | 0.00076 | 0.88637 | h | 8, 4, 0 |||

 41 | | h6 | 1.00000 | -0.23139 | h | 8, 5, 0 |||

 42 | | h7 | 0.94903 | 0.18078 | h | 8, 6, 0 |||

 43 | | h8 | 0.00000 | 1.37368 | h | 8, 7, 0 |||

 44 | | h9 | 0.99991 | 0.82651 | h | 8, 8, 0 |||

 45 | | h10 | 0.00000 | 1.76282 | h | 8, 9, 0 |||

 46 | | A | 0.00972 | -1.66540 | o | 11, 1, 0 |||

 47 | | B | 0.00072 | -0.29800 | o | 12, 1, 0 |||

 48 | | C | 0.00007 | -2.24918 | o | 13, 1, 0 |||

 49 | | D | 0.02159 | -5.85148 | o | 14, 1, 0 |||

 50 | | E | 0.00225 | -2.33176 | o | 11, 2, 0 |||

 51 | | F | 0.00052 | -1.34881 | o | 12, 2, 0 |||

 52 | | G | 0.00082 | -1.92413 | o | 13, 2, 0 |||

 53 | | H | 0.00766 | -1.82425 | o | 14, 2, 0 |||

 54 | | I | 0.00038 | -1.83376 | o | 11, 3, 0 |||

 55 | | J | 0.00001 | -0.87552 | o | 12, 3, 0 |||

 56 | | K | 0.01608 | -2.20737 | o | 13, 3, 0 |||

 57 | | L | 0.01430 | -1.28561 | o | 14, 3, 0 |||

 58 | | M | 0.92158 | -1.86763 | o | 11, 4, 0 |||

 59 | | N | 0.05265 | -3.52717 | o | 12, 4, 0 |||

 60 | | O | 0.00024 | -1.82485 | o | 13, 4, 0 |||

 61 | | P | 0.00031 | -0.20401 | o | 14, 4, 0 |||

 62 | | Q | 0.00025 | -1.78383 | o | 11, 5, 0 |||

 63 | | R | 0.00000 | -1.61928 | o | 12, 5, 0 |||

 64 | | S | 0.00000 | -1.59970 | o | 13, 5, 0 |||

 65 | | T | 0.00006 | -1.67939 | o | 14, 5, 0 |||

 66 | | U | 0.01808 | -1.66126 | o | 11, 6, 0 |||

 67 | | V | 0.00025 | -1.53883 | o | 12, 6, 0 |||

 68 | | W | 0.01146 | -2.78012 | o | 13, 6, 0 |||

 69 | | X | 0.00082 | -2.21905 | o | 14, 6, 0 |||

 70 | | Y | 0.00007 | -2.31156 | o | 11, 7, 0 |||

 71 | | Z | 0.00002 | -2.88812 | o | 12, 7, 0 |||

----|----------|----------|----------|----------|----|----------|----------|----------|-------

connection definition section :

target | site | source:weight

-------|------|--

 36 | | 1: 0.95093, 6: 3.83328, 11: 1.54422, 16: 4.18840, 21: 4.59526

 12: 2.30336, 17:-3.28721, 22:-0.43977, 27: 1.19506, 32:-0.84080

 23:-4.97246, 28:-3.30117, 33: 3.26851, 4:-0.19479, 9: 1.33412

 34:-1.02822, 5:-2.79300, 10:-1.97733, 15:-0.45209, 20:-0.61497

 37 | | 1:-0.93678, 6: 0.68963, 11:-0.94478, 16:-1.06968, 21:-0.47616

 12: 2.62854, 17: 5.05391, 22:-0.37275, 27: 0.12598, 32: 0.27619

 23:-1.45917, 28:-1.97934, 33: 1.01118, 4: 4.39595, 9:-2.78858

 34:-0.14939, 5: 1.80792, 10: 3.66679, 15: 2.53150, 20:-1.07000

 38 | | 1: 2.44151, 6: 0.41693, 11: 2.12043, 16: 1.40761, 21: 1.83566

 12:-0.55002, 17: 2.08524, 22: 0.63304, 27: 0.27301, 32:-2.49952

 23: 3.14177, 28:-1.25889, 33:-6.35069, 4:-5.25082, 9: 0.01774

 34:-3.66092, 5: 3.24401, 10: 1.88082, 15: 6.44985, 20: 3.24165

 39 | | 1: 5.17748, 6:-4.45709, 11:-0.65733, 16:-2.26190, 21:-2.69957

 12:-1.43420, 17: 0.33409, 22:-0.74423, 27:-1.38010, 32: 3.08174

 23:-4.42961, 28:-1.09858, 33: 2.09879, 4:-1.30835, 9: 0.79940

 34: 1.99276, 5: 2.61433, 10:-3.56919, 15: 1.00952, 20: 2.86899

 40 | | 1: 3.03612, 6: 0.05247, 11:-3.20839, 16:-4.03382, 21:-3.55648

 12: 0.23398, 17: 1.33895, 22: 6.03206, 27:-0.01723, 32: 0.09160

 23:-1.07894, 28:-1.77930, 33: 1.59529, 4:-1.57236, 9: 0.74423

 34:-0.13875, 5: 5.30719, 10: 2.13168, 15:-2.34832, 20:-5.00616

 41 | | 1:-4.41380, 6:-1.48152, 11:-2.62748, 16:-1.00557, 21:-0.06430

 12: 3.93844, 17:-4.01591, 22: 0.76102, 27:-0.36823, 32: 0.54661

 23: 4.15954, 28: 2.96118, 33:-3.30219, 4:-0.24202, 9: 1.56077

 34:-0.20287, 5:-1.46062, 10: 1.79490, 15: 1.96920, 20: 3.72459

 42 | | 1: 1.97383, 6: 2.53253, 11: 2.04922, 16: 1.13969, 21: 1.81064

 12: 0.32565, 17: 4.64358, 22: 1.02883, 27:-1.05720, 32:-0.71916

 23:-1.00499, 28:-1.10925, 33:-3.18685, 4: 2.12575, 9: 0.36763

32
 34:-0.18372, 5:-4.93490, 10: 0.26375, 15:-2.02860, 20:-5.43881

 43 | | 1: 0.07183, 6:-2.69081, 11:-1.24533, 16:-2.01347, 21:-1.36689

 12:-2.11356, 17: 1.24788, 22: 1.23107, 27: 0.27674, 32:-2.45891

 23: 5.17387, 28: 1.68170, 33:-2.30420, 4: 2.17011, 9: 0.86340

 34:-2.23131, 5:-0.11916, 10:-4.39609, 15:-2.92706, 20:-5.43783

 44 | | 1:-1.27907, 6: 1.89325, 11:-0.60419, 16: 3.60368, 21: 4.24280

 12:-2.77766, 17: 1.01698, 22:-1.97236, 27: 1.38773, 32:-2.55429

 23: 1.95344, 28: 2.85157, 33:-0.55796, 4:-0.64082, 9: 1.92937

 34:-2.71524, 5: 5.31087, 10:-2.08897, 15:-5.75332, 20: 2.43438

 45 | | 1:-1.22455, 6: 0.92594, 11: 1.13199, 16:-1.65062, 21:-1.41481

 12:-3.04575, 17:-3.21280, 22:-0.23726, 27: 2.11836, 32: 2.23237

 23: 5.96261, 28: 2.00822, 33: 2.97409, 4: 3.90943, 9: 1.54990

 34: 2.42877, 5:-3.58017, 10: 2.31309, 15:-4.01833, 20: 0.28834

 46 | | 45:-3.97560, 44: 0.45729, 43:-1.16526, 42: 0.38939, 41: 2.80876

 36:-4.04184

 47 | | 45:-4.88750, 44:-3.33955, 43:-1.72110, 42: 0.94756, 41:-2.24993

 36: 0.14327

 48 | | 45: 1.02597, 44:-1.82773, 43:-1.04974, 42: 2.09881, 41:-0.53220

 36: 2.75042

 49 | | 45: 1.58579, 44:-3.38572, 43:-0.89166, 42: 2.86233, 41: 2.25429

 36: 1.92163

 50 | | 45:-2.95134, 44: 2.39376, 43:-2.95486, 42:-0.11771, 41:-2.41775

 36:-0.73749

 51 | | 45:-4.16732, 44: 2.19092, 43: 3.46879, 42: 0.44175, 41:-2.47295

 36:-0.40437

 52 | | 45: 1.78256, 44: 4.64443, 43:-2.50408, 42: 0.65889, 41:-2.52796

 36:-1.73887

 53 | | 45:-3.64449, 44: 2.60025, 43:-1.57915, 42:-0.18638, 41:-4.14214

 36:-4.29717

 54 | | 45:-0.45205, 44:-1.44890, 43: 5.23345, 42:-0.35289, 41: 2.43160

 36:-1.99719

 55 | | 45: 0.46855, 44:-2.84431, 43:-1.80938, 42:-4.49606, 41: 1.16736

 56 | | 45:-1.27961, 44: 0.81393, 43: 2.66027, 42:-1.05007, 41: 0.47655

 36: 0.72057

 57 | | 45:-1.21679, 44:-3.13145, 43:-0.69538, 42: 0.05268, 41:-3.12564

 36: 2.16523

 58 | | 45:-3.44107, 44: 2.18362, 43:-1.60547, 42:-0.50213, 41: 2.47751

 36: 1.05544

 59 | | 45:-5.06022, 44:-5.08796, 43:-0.74552, 42:-0.67009, 41: 2.90942

 36: 1.10170

 60 | | 45:-0.03838, 44:-2.59148, 43:-0.98185, 42:-4.97460, 41: 1.03714

 36: 4.49324

 61 | | 45:-3.65178, 44:-2.61389, 43:-1.76429, 42: 1.01853, 41:-3.90286

 36: 0.46651

 62 | | 45: 1.17767, 44:-3.70962, 43:-1.11298, 42:-2.77810, 41: 2.22540

 36:-0.65937

 63 | | 45: 1.52270, 44:-2.42352, 43: 2.59287, 42: 0.19606, 41:-3.00602

 36:-3.14334

 64 | | 45: 3.00298, 44:-3.65709, 43:-1.65150, 42: 1.44547, 41:-3.98775

 36:-4.02590

 65 | | 45: 0.56820, 44: 2.37122, 43: 2.89143, 42:-4.22975, 41:-2.32045

 36:-2.17370

 66 | | 45:-4.13007, 44:-0.30654, 43:-0.63380, 42:-5.63405, 41:-1.78425

 36: 1.46460

 67 | | 45: 1.66534, 44: 1.99220, 43:-1.22676, 42:-4.09076, 41:-3.58451

 36: 1.40745

 68 | | 45: 0.60032, 44: 2.75100, 43:-1.17663, 42:-4.25699, 41: 1.60600

 36:-4.23531

 69 | | 45:-4.31415, 44:-3.41717, 43:-0.77030, 42:-1.36290, 41: 1.92319

 36: 0.28689

 70 | | 45: 0.54085, 44: 1.80036, 43:-2.19014, 42:-1.20720, 41: 1.54519

 36:-2.79769

 71 | | 45: 0.00018, 44:-4.11360, 43: 0.85345, 42: 1.19947, 41: 1.22067

 36:-3.29634

-------|------|--

B.2. Example 2:
SNNS network definition file V3.0

33
generated at Fri Aug 3 00:25:42 1992

network name : xor

source files :

no. of units : 4

no. of connections : 5

no. of unit types : 2

no. of site types : 2

learning function : Quickprop

update function : Topological_Order

site definition section :

 site name | site function

-----------|------------------

 inhibit | Site_Pi

 excite | Site_WeightedSum

-----------|------------------

type definition section :

name | act func | out func |sites

--------------|--------------|--------------|---------

outType | Act_Logistic | Out_Identity |

LongeroutType | Act_Logistic | Out_Identity |

--------------|--------------|--------------|---------

unit default section :

act | bias | st | subnet | layer | act func | out func

---------|----------|----|--------|-------|--------------|-------------

 0.00000 | 0.00000 | h | 0 | 1 | Act_Logistic | Out_Identity

---------|----------|----|--------|-------|--------------|-------------

unit definition section :

no. | typeName | unitName | act | bias | st | position | act func

----|---------------|----------|----------|----------|----|----------|---------

 1 | | in_1 | 1.00000 | 0.00000 | i | 3,5,0 |||

 2 | | in_2 | 1.00000 | 0.00000 | i | 9,5,0 |||

 3 | | hidden | 0.04728 | -3.08885 | h | 6,3,0 |||

 4 | | result | 0.10377 | -2.54932 | o | 6,0,0 |||

----|---------------|----------|----------|----------|----|----------|---------

connection definition section :

target | site | source:weight

-------|---------|---

 3 | | 1: 4.92521, 2:-4.83963

 4 | | 1:-4.67122, 2: 4.53903, 3:11.11523

-------|---------|---

	JavaNNS
	Contents
	1. Introduction
	1.1. How to read this manual

	2. Licensing and Acknowledgements
	2.1. License Agreement
	2.2. Acknowledgments

	3. Installation
	3.1. Running JavaNNS

	4. A Quick Tour of JavaNNS
	4.1. Starting JavaNNS
	4.2. Loading Files
	4.3. View Network
	4.4. Training Network
	4.5. Analyzing Network
	4.6. Creating a Network
	4.7. Graphical Network Display
	4.8. Training and Validation Pattern Sets

	5. Network Creation and Editing
	5.1. Network View and Display Settings
	5.2. Tools for Creating Networks
	5.3. Editing Units

	6. Pattern Management
	7. Training and Pruning Networks
	8. Analyzing Networks
	8.1. Projection Panel
	8.2. Weights Panel
	8.3. Analyzer

	9. Loading, Saving and Printing
	Appendix A: Kernel File Interface
	A.1. The ASCII Network File Format
	A.2. Form of the Network File Eries
	A.3. Grammar of the Network Files
	A.4. Grammar of the Pattern Files

	Appendix B: Example Network File
	B.1. Example 1:
	B.2. Example 2:

