Bio-Inspired Artificial Intelligence

Cellular Automata Laboratory Exercise

Thomas Schaffter & Sara Mitri
November 13, 2009

Exercise 1 - Elementary Cellular Automata

We will start with the most classical and simple example: the 256 Elementary CA. These
are binary one-dimensional CA with neighborhoods composed by 3 cells.

Open Matlab and run the m-file ex_7.m. This tool allows you to generate and visualize
easily the behavior of the 256 elementary CA. In the Settings panel, a rule code can be
assigned in the range [0,255]. Width and Time define the width of the cellular space
and the number of time steps computed and displayed, respectively. Each run has the
automaton space initially filled with random cell states (active cells in red). The density
of the cells initially active can be changed by assigning a real value in the range [0,1] to
the variable Density.

sno Ex 1: Elementary Cellular Automata
Settinas
Rule 30 Density 0.4
[Random Rule }
Width 200 Time 100

g pls piie plle il pie plle i o

Figure 1: Matlab tool to visualize the 256 elementary CA. After each run, the transition
rule and the cellular space are displayed. Active cells are represented in red.

Transition Rule

Check your understanding of the way the numeric code is assigned to the transition rule
of the elementary CA. Complete below the transition rule associated to Rule 60 (here
active cells are in black) without using Matlab.

pupian e E i R R

Find the rule code of the following transition rule. Check now your results with the
Matlab tool and observe the behaviors determined by these two rules.

g gl miatnienly B niN"S

Traffic Rules

Run the traffic rule corresponding to Rule 184. Try different values for the initial density
of the cars (red cells) and see what kind of traffic flow emerges.

anon Ex 1: Elementary Cellular Automata

Settinas
’7Rule 184 Densiy |04

Random Rule
Width 200 Time 100

T TTTT

Find the rule code that makes the cars run in the opposite direction relative to Rule
184. What kind of boundary condition is implemented ?

Try to define other kinds of traffic rules, e.g. one where cars do not wait for the space in
front of them to become free in order to move. Notice that one must take care to ensure

the conservation of the cellular space, i.e. cars should not be created nor destroyed by
the CA rule.

Qualitative Classification

Observe the behavior of Rule 40, Rule 56, Rule 30 (the Random Number Generator)
and Rule 110 (the computationally universal rule at the heart of Wolfram’s book “A
New Kind of Sciences”) that were used in the lecture as examples of the four qualitative
classes of CA behavior.

Assign rule number at random using the button Random Rule. Observe the resulting
CA behavior and try to assign the rule to one of the four classes of the qualitative
classification. Try to do that for at least 5 random rules.

8060 Ex 1: El y Cellular Automata 800 Ex 1: El y Cellular Automata
Settinas Settings
Rue | 110] Densiy | 04 —— Rue (150 Densty |04 —
Widh 7300 | Time 200 [—] Widh [300| Tme [200 ;J
TTTTTTTT TTTTTTTT

(a) (b)

Figure 2: (a) Rule 110 features a complex, localized, propagating and interacting struc-
ture. (b) Which one of the four qualitative classes does Rule 150 belong to ?

Exercise 2 - Traffic Jam

The animation of elementary CA is not really useful for most of them, since it produces
what appears as a meaningless sequence of cellular space configurations. However, in
the case of the traffic elementary CA defined by Rule 184, the animation implemented
here gives an easily interpretable and visually appealing result.

Run the m-file ez_2.m, that implements a single lane route containing a traffic jam
characterized by a high density of cars, preceded and followed by two zones of lower
car density. The parameters collected in the Settings panel allow the definition of the
widths and car densities of the three zones. Every click on the button Run generates a
different initial condition, i.e. the initial state of the traffic jam.

ano Ex 2: Traffic Jam

Settings

Density: preceding | 0.1 injam 1.0 folowing | 0.5
Width: preceding = 100 of jam 30 folowing | 100
Rule | 184 Time | 100 Run

TTETTYTTT

Figure 3: Hlustration of a traffic jam defined by a high density of cars, preceded and
followed by zones of lower car density. Cars are represented by red cells.

Modify the value of the Density and Width parameters and click on Run. Observe and
qualify the behavior of the traffic jam as modeled by Rule 184.

Define and observe the behavior of a negative jam (a clearing between two jams).
You found in Exercise 1 the rule code for the motion in the opposite direction relatively

to Rule 184. Assign the rule code found in the field Rule of the interface and see if the
motion is actually reversed.

oo Ex 2: Traffic Jam
Settings
Density: preceding | 0.1 injam 1.0 following | 0.5
Width: preceding | 100 ofjam = 30 following = 100
Rule Time | 100 Run

YT

Figure 4: Run the CA with the rule code that leads to the above traffic jam behavior.
Is the motion reverted compared to the one displayed in Figure 3 7

Exercise 3 - Diffusion-Limited Aggregation

Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a ran-
dom walk due to Brownian motion cluster together to form aggregates of such particles.
This model was proposed to simulate certain types of aggregation, for instance metal ions
diffusing through a fluid and sticking to a charged electrode. ”Diffusion” because the
particles forming the structure, also called Brownian tree or cluster, wander around ran-
domly before attaching themselves (?aggregating”) to the structure. ” Diffusion-limited”
because the particles are considered to be in low concentrations and therefore don’t inter-
act together. Other examples can be found in non-living and living nature, e.g. mineral
deposition, snowflake growth, lightning paths or corals growth.

electrode

(a) (b)
Figure 5: (a) DLA structure grown from a copper sulfate solution in an electrodeposition
cell. (b) Red coral Errina novaezelandiae in the Te Awaatu Marine Reserve in Fiordland.

Cellular Automaton

The goal of this exercise is to implement a two-dimensional CA that mimics a DLA
process. Open Matlab and run the m-file ex_3.m. Have a look at the content of the
file to become familiar with the main variables (top part). The automaton space is
formed by an array of cells, which size is given by the integer parameters nz and ny.
The z-axis represents the vertical axris and the y-axis the horizontal axis. Motionless,
non-interacting particles (blue cells) are initially present in the CA space. Their density
can be changed through the variable particlesDensity.

ny

Figure 6: First run of er_3.m. The above automaton space is defined by an array of
40x40 cells. Motionless particles (in blue) are initially present in the environment.

Implementation of a Pseudo Brownian Motion

This section describes how to obtain particles that undergo a random walk. These
particles are assumed to be in low concentrations, so no interaction between them are
modeled.

Start by setting in the code the number of time steps to T=7000. Run ez_3.m and
observe the motion of the particles. Note that you can speed up or slow down the walk
of the particles by adjusting the parameter delay. You can also change the size of the
automaton space (nz and ny must be divisible by 2) or resize the window to get a better
visibility. Try to qualify the movement of the particles. What kind of neighborhood is
implemented 7 Does the observed motion features some randomness ? If it’s possible,
find the deterministic and random components of the motion.

Try to understand what does the code between the tags “Pseudo Brownian motion” and
“End”. The automaton space is divided into blocks of 2x2 cells inside which the position
of the particles is updated. At each time step, two random, complementary matrices
containing “0” and “1” elements are generated (cw and ccw). With your understanding
of the code, find and draw the updated position of the particles at time ¢ + 1 for the
initial configuration of the following 4x4 CA. Consider vectors zind =yind = [1, 3] which
define the indexes of the upper-left cell of each block, and black cells below to represent
particles and/or “1” matrix elements!.

il

CA space (t)

CA space (t+1)

You observe that the motion of a particle is actually limited to the block it originally
belongs to. Which simple modification could be adopted to allow the particles to move
across the entire automaton space ?

What happens if you replace in the code s=0 by s=mod(t,2) ? Run the modified m-file,
observe and comment the new motion of the particles.

Growth of Brownian Trees

This section aims to simulate the growth of Brownian trees (or “sticky” clusters) using
the cellular automaton developed at the end of the previous section. Beforehand, operate
the following modifications where required. Then run ez_3.m.

o nz =ny = 200
e particlesDensity = 0.1
e T = 7000

o delay =0

Hint: only the elements in cw that are defined by xind and yind are used, that are here cw(1, 1),
cw(3,1), cw(1,3), and cw(3,3).

o cnableBrownianTree = 1

At time t=0, the Brownian tree is composed of a single, yellow cell placed at the center
of the automaton space. Observe how the tree grows from moving particles that stick
to it. What is the condition required for a blue particle to stick and become part of the
tree 7 Figure 7 illustrates the growth of two trees resulting from two successive runs of
er_3.m.

Figure 7: Growth of Brownian trees using a cellular automaton that mimics a diffusion-
limited aggregation (DLA) process. The two different trees are the result of two suc-
cessive runs of ez_3.m (with identical parameter values). Snapshots are taken at time
t=>500, 2000 and 5000 iterations.

Have a look at the structure of the following tree. What distinct it from the two ones
displayed in Figure 7 (t=5000) ? Try different values for the parameter responsible of
this change and observe how it affects the structure of the tree.

At which part of the tree does the growth occur mainly ? How do you expect the size
of a Brownian tree (number of cells that compose it) to vary in function of the time ?

You can plot the size of a tree over the time by setting plotGrowth = 1. To speed
up the process, you can comment the part of the code which updates the graphical
representation of the cellular automaton. Does the obtained profile correspond to what
you expected 7 Comment the following growth profile.

4000 S

3500 7

3000 F / // 1
/

N
a
o
S]

T
~
~
N
L

2000 [/ 1

Tree size [cells]
~

1500 V74 .
L iy 4
1000 /Y

500 y/ 4]

. . .
0 1000 2000 3000 4000 5000 6000
Time [iteration]

Figure 8: Size of Brownian trees (number of cells) over the time (number of iterations).
The plain line is the median and the dashed lines are the upper and lower quartiles
obtained from the growth of 50 trees (particlesDensity = 0.1).

Does the initial density of the blue particles present in the automaton space affects the
general trend of the observed growth profile ?

Do diffusion-limited aggregation processes possess fractal properties 7 Look at Figure 9
to convince yourself.

Figure 9: Diffusion-limited aggregates with (a) 1 million and (b) 100 million particles.

Compare the results obtained so far in Figure 7 with the developed cellular automaton
with the red coral structure and the structure grown from a copper sulfate solution
displayed in Figure 5. What is the main difference observable ? Try to find what can
account for this difference. Which single parameter p would you need to add to the
current implementation of the CA 7 Figure 11 illustrates the result of the improved
cellular automaton run with decreasing values of this new parameter.

Figure 10: One single parameter p accounts for the difference between these three Brow-
nian trees. What does it represent ? (a) p = 0.2 (b) p = 0.05 (¢) p = 0.01

Mirek’s Cellebration

A very complete Java tool for CA experiments has been implemented by Mirek Woj-
towicz. It can be either downloaded as a standalone software or run as an applet from:

http://psoup.math.wisc.edu/mcell/

MJCell allows playing 300+ Cellular Automata rules and 1400+ patterns. It can play
rules from 13 CA rules families such as Generations, Life, 1D totalistic, 1D binary,
Neumann binary, General binary, Margolus neighborhood, etc. Hence, MJCell is the
ideal tool to experiment the rules introduced in the lecture and observe the variety of
patterns and dynamics that can occur in a CA universe.

e0o Mirek's Java Cellebration v.1.50
CA patterns
Generations = Select the pattern:
p - StarWars_01.mcl
artiars Starwars_02.mel

2] 345/2/4 StarWars_03.mcl
4p112gun.mel
d| Patterns library spdgunmel
AdjGunL.mel
AdjGun2.ml
AdjGun3.ml

Favourities

STOP Step

VLA LEE .
AgainstCurrent.mcl
SETTTER Sr—
Slower Faster Beauty01l.mec|
Cycle: 62 Burst into flame.mcl
Conveyer.mel
Population: 868 CrossPuff.mcl
DSnake.mc|
States: 1/4 Digits.mcl
Board: 200x200/5 Duplic.md
S Duplicate.mcl
5 Elastic.mcl
Mwrap Mcrid e e — ; ExtraGuns.mcl
(Load) (Cancel)
UAdd UMono ClUni (20% (3] (Rand) [BLK5xS +1 (seed) i

Figure 11: In Star Wars rule, most cells travel horizontally and vertically at light speed
in all sorts of Hauler-like formations. Many formations resemble space ships, often
shooting missiles, what gave Mirek Wojtowicz the idea for the rule name.

http://psoup.math.wisc.edu/mcell/
http://psoup.math.wisc.edu/mcell/rullex_gene.html
http://psoup.math.wisc.edu/mcell/rullex_life.html
http://psoup.math.wisc.edu/mcell/rullex_1dto.html
http://psoup.math.wisc.edu/mcell/rullex_1dbi.html
http://psoup.math.wisc.edu/mcell/rullex_nmbi.html
http://psoup.math.wisc.edu/mcell/rullex_gebi.html
http://psoup.math.wisc.edu/mcell/rullex_marg.html

