Bio-Inspired Artificial Intelligence

Laboratory exercise: Average landmark vector navigation

Steffen Wischmann and Thomas Schaffter
10.11.2009

1 Goal

The goal of this exercise is to systematically investigate a foraging strategy,
that is inspired by insect navigation, with respect to its robustness to varying
environmental and sensory conditions. You will apply your knowledge from
the statistics lecture to a specific example that you learned about in the Bio-
mimetic robots lecture. You will make technically sound conclusions about
the robustness of this so called Average Landmark Navigation model [3, 2]
(for how, for instance, ants perceive landmarks see [1]).
By the end of this exercise you should have learned something about:

e How to systematically test behavior under varying conditions:

— position of the robot in the environment
— level of sensory noise
— number of landmarks

— robustness to missing landmarks
e How to use Matlab for experimental data analysis:

— linear regressions
— correlation analysis

— significance tests



Figure 1: Average landmark navigation. Left: Homing mechanism of the
ALV model. Landmarks are shown as black circles. The target position is
marked with a cross (A). Each gray ring represents the horizontal portion of
the landmark panorama as perceived from the position in the center of the
ring. Vectors attached to the outer ring depict landmark vectors. A: The AL
vector of the target location is computed from the average of the landmark
vectors and stored in memory (vector in the center). B: The difference
of the AL vectors of current location (thin vector, small head) and target
location (thin vector, wide head) gives the home vector (thick vector). Left:
Performance of the ALV model in a situation with 11 landmarks.

2 Theory

2.1 Average landmark navigation

The following description of the average landmark navigation model is an
excerpt of from [3].

Figure 1 (left) visualizes the homing mechanism of the ALV model. A
unit vector points from the position of the agent towards each detected land-
mark feature, in this case the center of black sectors in the horizontal view;
these vectors are called “landmark vectors”. Their average - the AL vec-
tor - is an unambiguous signature for each location. The AL vector of the
target location is stored. On the return journey, the agent follows a con-
tinuously updated home vector given by the difference between current and
stored AL vectors. Note that the ALV model requires some kind of external
reference to align the views or vectors to the same compass direction. The
formal description of the ALV model presumes that the axes of the agent’s
coordinate system are aligned with the corresponding axes of the world coor-



dinate system. The positions of n landmark points in the plane are given by
x;,t =1,---,n. From each agent position x in the plane, a landmark vector
L;(z) with unit length points towards landmark i:

Ty — &

Li(x) (1)

Visibility of all landmarks from all points is presumed in this description.
The AL vector A(z) of position z is expressed as the average of landmark
vectors:

 lwi =l

A(r) =

> Lila) ©)

1
n;3

Given a target position g, a home vector field H(z) can be computed by
substracting the AL vector of the target location A(zg) from the AL vector
field A(z):

H(x) = A(x) — A(o) (3)

In the homing process, the agent follows H(x) to return to the target
location zy (the constant ¢ determines the speed):

& =cH(x) (4)

Despite its parsimony, the ALV model successfully copes with complex
environments with a high number of landmarks that can even be partly
covering each other. In the following experiments we will test this statement
not only to landmark failures but also to sensory noise and different starting
conditions.

3 Experiments

Download the file 091110_averageLandmarkNavigation_exercise.zip. Unzip it,
open Matlab and change into the according folder as your working directory.

3.1 Experiment 1: Influence of starting position

Open the file ezercisel.m. Press the run button. What you can see in the
figure (Figure 2):

e Green spots mark the landmarks

e The asterisk marks the target location

3



00 T T T T T T T T T O

S U HONNOTS SO SOOI SONUTS OSSO S
OSSOSO S SO S U Wolf N
PP S S LS S SO T S
71 NS N N S N 0 T N

00} . N . . S e

20 e e e T

0 20 40 &0 an 100 120 140 180 180 20O

Figure 2: Your simulation environment. Landmarks are the big green dots.
The robot trajectory to a given target location (black asterisk) from different
starting positions is shown as blue dots and lines.

e The blue dots and lines mark the trajectory of the robot

You can put the robot in different starting locations by adding a position
by following the syntax of:

r=addStartPosition(r, [x y]);

You can add as many starting positions as you want and wherever you
want (note, that positions outside [0;200] are not displayed by default, you
need to zoom out of the figure if you want to see them). Your task is now
to investigate whether the final distance to the target depends on the initial
distance of the robot to the target. For each starting position the initial dis-
tance and the final distance is written to the file log_diffStartingPositions.tzt.
Change the name of the file by changing the variable file Name if you want to
try out different sets of starting positions. Note that the simulation will run

faster if you set the variables DRAW_SINGLESTEPS and DRAW_TRAJECTORIES

to 0.

e (Create a set of initial starting conditions that will be suitable for further
statistical analyzes.

After you evaluated several initial positions, open the file plotExcersisel.m
and run it. The plot shows you the final distance in relation to the initial
distance.

Now analyze the data as follows:



e Do a linear regression and plot the result together with the raw data
(hint: use the matlab functions polyfit and polyval).

e Find out whether or not the two variables are statistically significantly
correlated (hint: use the matlab function corr).

e Does your sample size influence the result? (try small and large sample
sizes by varying the number of starting positions)

3.2 Experiment 2: Sensory noise
3.2.1 Noise while searching

Real sensors, either of insects or robots, are always noisy and don’t give a
precise value as we dealt with in the previous experiment. In the following
we will apply different noise levels to our model.

Open the file ezercise2.m. Press the run button. You see two trajectories
of the robot searching for the target from a random starting position. In the
first case the sensors are perfect, in the second case a gaussian noise with a
standard deviation of 0.1 (i.e., ~ 10%) is applied to each sensor reading (i.e.,
the vector to the landmarks). Rerun the experiment a few times and observe
how the noise influences the robot’s trajectory.

In the next steps we want to systematically investigate the influence of
sensory noise with respect to the performance of the robot in finding the
target.

e Change the searchNoise variable so that it contains different levels of
noise (the noise should be kept between [0.0;1.0]).

o Set DRAW_SINGLESTEPS=0 and DRAW_TRAJECTORIES=1.

e Rerun the experiment and visually observe how different noise levels
influence the trajectory of the robot.

e Increase the number of NUMBER_OF_TRIES to 3.

e The results of your runs are saved in the file log_diffSearchNoise.txt
where the first column gives you the noise level and the subsequent
columns tell you the final distance of the robot to the target for each
try. You can change the fileName if you want to try different sets of
experiments.

Now we want to apply some statistics:



e Open the file plotEzcersise2.m. 1t will read the log_diffSearchNoise.txt
file you just created and plot the following information:

— The first plot shows you the result of each single experiment and
a linear regression as you know it from Experiment 1.
— The second plot visualizes your data in form of boxplots.

— The third plot shows you the average performance and the stan-
dard deviation for each noise level.

What can you tell from these plot about the difference between the
different noise levels?

Extend the script below the line
htest for significant differences
To include a significance tests for the different noise levels (hint: use

the ttest matlab function). Note that your data has been transformed.
Now all results for a particular noise level are in one column of data.

How well do the p-values correspond with you visual observation of the
box-plots?

Change now the NUMBER_OF_TRIES in ezercise2.m to somewhere
between 3 and 20. Rerun the experiment and the analysis. Why is this
important for statistical analysis?

What else can you change to improve strengthen your statistical anal-
ysis (remember what you've just learned in Experiment 1)?

3.2.2 Noise while memorizing

We now want to investigate how sensory noise during the memorizing process
(i.e., when the target vector is calculated) influences the performance of our
robot. Open the file exercise2b.m. Press the run button. You see two
trajectories of the robot searching for the target from a random starting
position. In the first case the sensors are perfect, in the second case a gaussian
noise with a standard deviation of 0.1 (i.e., = 10%) is applied to each sensor
reading but now only during the memorizing process (for simplicity we keep
the noise during searching constant at 0.0). Rerun the experiment a few
times and observe how the noise influences the robot’s trajectory.



e change the memoryNoise variable so that it contains different levels of
noise (the noise should be kept between [0.0;1.0]

e Continue as in the previous experiment.

e For statistical analysis reuse the plotFzcersise2.m script. Note, that
the default filename for this experiment is log_diffMemoryNoise.tzt.

e Extend the script to compare the results with the results of the previous
experiment.

e What can you say about the difference between sensory noise during
memorizing and sensory noise during searching.

3.3 Experiment 3: Number of landmarks

Now we want to investigate the influence of the number of available land-
marks on the performance of the robot.

e Open the file exercise3.m.

e Choose an appropriate noise level for searchNoise and memoryNoise
based on your experience from Experiment 2 (e.g., 0.05).

e Choose an appropriate number for NUMBER_OF_TRIES (e.g., 10)

e Now systematically vary the number of landmarks by using the func-
tion:

w=addLandmark(w, [4 8], 0)

this would set a landmarks at position (4, 8). (keep the last argument at
0 for now). Keep the position of the landmarks within [0; 200] otherwise
you need to zoom out in the trajectory plot to see them.

e Each time you run the experiment with a different number of landmarks
a line is added to the file log_diffNoOfLandmarks.tzt giving the perfor-
mance for this condition of each trial (if you want to reset everything,
just delete this file and start anew).

e Open the file plotEzcersise3.m. It will plot your data in a way you
are used to from the previous experiment (note that each condition
correspond to the experiment you conducted with different numbers of
landmarks in sequential order).



e How does the number of landmarks influence performance?

e Vary now the level of sensory noise and investigate how the number of
landmarks influence the results compared to what you found out in the
previous experiment (note that you need move or delete the log file if
you start a new set of experiments).

3.4 Experiment 4: Missing landmarks

Now we want to investigate the robustness of the behavior if landmarks
are missing during the search behavior. This can happen, for instance, by
occlusion or because landmarks are not within the visual field of the robot
anymore.

e Open the file exercise4.m

e When adding landmarks by

w=addLandmark(w, [4 8], 0)

the last argument of this function determines whether or not the robot
can see this landmark when it is searching for the target (set this value
to 1 if you want this particular landmark to not be visible during search-
ing, otherwise set it to 0).

e Landmarks that are not visible during search (but were visible during
the memorizing process) appear red in the trajectory plot.

e Compare different set of landmarks with and without removal of one or
more landmarks by using the script plotFExcersise3.m which you know
already from the previous experiment (note that you need to change
the fileName to log_diffSearchMissingLandmarks.txt).

e What can you say about the robustness of the behavior with respect
to the number of available landmarks and the number of missing land-
marks?

Of course landmarks can also be missing while memorizing which are
present while searching.

e Proceed as above, but now make landmarks invisible during memorizing
by changing the last argument of the following function to 2



w=addLandmark(w, [4 8], 2)

Landmarks that are missing during memorizing but present during
searching are marked yellow in the trajectory plot.

e Change the fileName variables in the scripts appropriately if you test
different sets of experiments but want to keep your old data.

You can now investigate different sets of combinations of landmarks miss-
ing during memorizing or/and during searching.

References

[1] Paul Graham and Ken Cheng. Ants use the panoramic skyline as a visual
cue during navigation. Current Biology, 19(20):R935 — R937, 2009.

[2] Dimitrios Lambrinos, Ralf Méller, Thomas Labhart, Rolf Pfeifer, and
Riidiger Wehner. A mobile robot employing insect strategies for naviga-
tion. Robotics and Autonomous Systems, 30(1-2):39 — 64, 2000.

[3] Ralf Méller. Insect visual homing strategies in a robot with analog pro-
cessing. Biological Cybernetics, 83(3):231-243, August 2000.



