
Bio-inspired Artificial Intelligence

Exercise: Ant Colony Optimization

Pawe l Lichocki, Sabine Hauert Date: 24 November 2009

1. Introduction In this exercise we focus on using ACO in order to find solutions for TSP.

• Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find
approximate solutions to difficult optimization problems.

• In Traveling Salesman Problem (TSP) you are given a list of cities and their pairwise distances,
the task is to find a shortest possible tour that visits each city exactly once.

In general TSP is a very difficult computational problem and finding exact best solution often re-
quires many years of CPU time. For this reason people has developed different heuristic approaches
for that problem - heuristic means that the algorithm usually finds a very good solution, but not
necessarily the optimal one. ACO is exactly one of such heuristic approaches.

ACO was inspired by natural systems of real ant colonies. The main principles of the algorithm
were presented on the lectures. We remind them in a condense form
(see http://www.scholarpedia.org/article/Ant colony optimization for more detailed information):

(a). In a single iteration of ACO m ants simultaneously create m tours (one tour per each ant) of
size n (in our case, n is the size of the TSP problem).

(b). There are k iterations, the best solution (the shortest tour) found during the entire run is
considered to be the result of the ACO algorithm.

(c). Ants choose their paths in a guided stochastic way, an ith ant on city src moves to city dst
using the following probabilistic rule:

pi(src, dst)


τ(src,dst)α·η(src,dst)βP

s∈Ji(src)
τ(src,dst)α·η(src,dst)β if s ∈ Ji(src)

0 otherwise

Where Ji(src) is the set of components that do not belong yet to the partial solution of ith
ant , and α and β are parameters that control the relative importance of the pheromone
versus the heuristic information η(src, dst) = 1

d(src,dst) , where d(src, dst) is the length of the
edge (src, dst).

1



(d). There are two rules to update the pheromone: local and global.

((i)) local rule: the pheromone level of each edge visited by an ant is decreased by a fraction
(1−ϕ) of its current level and increased by a fraction ϕ of the initial pheromone level τ0

τ(src, dst) = (1− ϕ) · τ(src, dst) + ϕ · τ0

((ii)) global rule: when all ants complete their tours, the length L of the shortest tour in the
current iteration of ACO is used to update the pheromone levels of only the edges of
this shortest path in inverse proportion to the path length.

τ(src, dst) = (1− ρ) · τ(src, dst) + ρ · L−1

Note: the version of the algorithm presented on the lecture assumed that ρ = ϕ.

(e). Typical values for the algorithm are as follow:

((i)) τ0 = (n · Lnn)−1

((ii)) ρ = ϕ = 0.1

((iii)) α = 1

((iv)) β = 2

((v)) for TSP we typically use m = n ants (where n is the number of cities)

((vi)) normally the ACO runs for at least 100 iterations (but this may as well go in thousands),
before it converges to a very good solution.

Note: Just for this exercise purposes, we have artificially decreased the initial level of the
pheromone. This was necessary in order to obtain the solution in reasonable time and still
be able to do all the tasks required. Thus, in our case 30 ≤ k ≤ 100 is sufficient.

Another heuristic for solving TSP is the Greedy algorithm (also called NearestNeighbors). It
is simple and naive, but also very fast, and quite efficient (meaning it produces relatively good
results). It works basing on one straightforward principle:

(a). First randomly pick a starting city.

(b). Then, from all the cities that are not yet on the tour pick one that is nearest to the last added
city. Repeat step (b) until you create a whole tour.

2. Tools The main tool in this exercise is Matlab. You are provided with the implementation
of ACO algorithm:

(a). Init.m file contains the initial settings for both ACO and Greedy algorithm.

(b). Aco.m file contains the source code for ACO algorithm.

(c). Greedy.m file contains the source code for Greedy algorithm.

2



(d). GetCities.m file contains a function for loading a TSP instance from a file.

(e). Ulysses22.m file contains an exemplary TSP instance, which is used during this exercise.

Commands in Matlab:

(a). To run the ACO algorithm type
> [o, p] = Aco().
This runs the ACO and stores the initial settings in o (’o’ for options) and the solution in p
(’p’ for problem). See Init.m and Aco.m for details.

(b). Later on you will be also using a greedy heuristic to solve TSP. The Greedy algorithm is run
by typing:
> [o, p] = Greedy(o, p).
Notice that you need to run Aco first, before running the Greedy algorithm (you must pass
o and p as arguments).

Note: Both ACO and Greedy will not yield good results at first! You must set some initials
options and slightly change the code (you are asked to do that in the next part of the tutorial).

(c). To see the length of the best found tour by ACO type:
> min(p.acoBestLens)

(d). To see the length of the best found tour by Greedy type:
> p.greedyBestLen

(e). To plot the fitness of the solutions found by ACO in next iterations type:
> plot([1 : length(p.acoBestLens)], p.acoBestLens)

(f). To see the problem (cities) on a map type:
> plot(p.cities(:, 1), p.cities(:, 2),′+′)

3. Finish the implementation Your first task is to choose proper pheromone updating rules
and set properly the initial number of ants.

(a). There is some code in the Aco.m file that needs to be commented-out, search for lines marked
with TODO. Those are the pheromone update rules which you might want to comment-out...
or not - it is your task to choose proper ones, the goal is to have an algorithm that acts as
the ACS.

Q: What is the main concept behind the local pheromone update rule?
a) allow exploration of many different solutions
b) make convergence to a good solution more probable

Q: What is the concept behind the global pheromone update rule?
a) allow exploration of many different solutions
b) make convergence to a good solution more probable

3



4. Play with the parameters

(a). In file Init.m set the number of ants (variable o.m) to 1, run Aco and note the length of best
tour found.
Best fitness when o.m = 1 equals to

Now set the number of ants to a typical value in case of TSP and run Aco once again
(HINT: use as many ants as there are cities - variable o.n):
Best fitness when o.m = equals to

Q: Did it help to use more ants?
A: YES / NO

Q*: What do you think, is it reasonable (from practical point of view) to use a huge amount
of ants, let say 100000?
A: YES / NO

Note: leave o.m as you have just set it.

(b). In Init.m file:
1. Set the number of tours (o.k) to 20. Run Aco and note the length of the best tour found.
Best fitness when o.k = 20 is .

2. Then set o.k = 50, run Aco and once again note the length of the best tour found.
Best fitness when o.k = 50 is .

3. Then set o.k = 70, run Aco and once again note the length of the best tour found.
Best fitness when o.k = 70 is .

Q: In order to find better solutions, does it help to construct more tours (using larger value
of o.k)?
A: Using o.k = 50 helps / does not help (in comparison to the case when o.k = 20).
A: Using o.k = 70 helps / does not help (in comparison to the case when o.k = 20).
A: Using o.k = 70 helps / does not help (in comparison to the case when o.k = 50).

Q*. Observe the fitness plot for o.k = 50 and o.k = 70. Can you think of any other
stop condition for ACO (other that maximal number of tours)? Focus on the convergence.
A:

Q*. What would be a very simple and ”practical” stop condition? Focus on the actual running time.
A:

Note: when you finish, set o.k back to 20!

(c). Implement and test different ant behaviors by changing o.alpha and o.beta so that:

4



((i)) ants take into account only the pheromone trail
o.alpha=
o.beta=
best fitness=

((ii)) ants take into account only distances between cities
o.alpha=
o.beta=
best fitness=

Q: In order to find better solutions, does it help to use both the pheromone and the distance
between cities (compare with results obtained in 4.(b))?
A: YES / NO

Note: when you finish, set o.alpha back to 1 and o.beta back to 2!

5. Comparison with other solutions Now, when you know a lot about the ACO itself, you
can compare it with another algorithm - in the file Greedy.m you will find the greedy heuristic.

(a). Notice that running the greedy algorithm only once seems not fair (in comparison to ACO),
since the ACO uses many ants that construct many tours (uses much more computations and
time).

Q: Set the variable o.greedyReps (in file Greedy.m) so the comparison between Greedy and
ACO is fair (HINT: construct the same amount of valid tours in Greedy algorithm as in the
case for ACO).
A: o.greedyReps=

Q: Is the greedy algorithm better or worse than ACO? (compare your result with those
acquired in point 4.(b))
A: Best fitness of the greedy algorithm is
A: Ratio between fitness of the greedy algorithm and fitness of ACO is

(b). The optimal value for the Ulysses22.tsp problem is known. Go find the solution on
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html.

Q: What is the length of the optimal tour? (compare it with the results obtained by Greedy
and Aco)
A: Fitness for the optimal algorithm is
A: Ratio between fitness of the greedy algorithm and optimal one is
A: Ratio between fitness of ACO and optimal algorithm is

5



6. Supplementary questions Try answering these three ”open” questions. Every one of them
links to one of the three main properties of ACO algorithms: using pheromone, parallelism and
randomization (not in this order). Do you see which question relates to which property? Why
those properties are important?

(a). Q: Is running a single ant m ∗ k times the same as running m ants for k iterations? Think
what is the role of local pheromone decrease.
A:

This question is linked with the concept of
using pheromone / parallelism / randomization

(b). Q: Remind the situation when you were changing o.alpha and o.beta, so the ants would take
into account only the information about distance between cities. Assume also that you use
just 1 ant. Is the ACO equivalent to the greedy algorithm? Think about the probabilistic
rule that defines ants behaviors.
A:

This question is linked with the concept of
using pheromone / parallelism / randomization

(c). Q: ACO algorithms are considered very efficient when dealing with dynamic problems. Imag-
ine you have a TSP in which nodes sometimes disappear and reappear again. Can you explain
why ACO is a good choice to solve this problem? Think about the pheromone trail.
A:

This question is linked with the concept of
using pheromone / parallelism / randomization

6


